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I.       Introduction 

The purpose of this research was to study the applications of artificial neural networks 
(ANNs) as intelligent controllers in motion control. Specifically, the motion control 
systems which exhibit distributed mechanical flexibility was the focus. 

The accurate and high bandwidth motion control of systems which have distributed 
mechanical flexibility is a difficult and long standing problem. The difficulty is the result 
of the following characteristics of such systems: 

1. nonlinear dynamics due to large relative rotational motion of mechanisms 
and structural components, 

2. large dynamic order due to distributed flexibility, 
3. the need for fault tolerant operation in presence of uncertainties in the 

operating conditions. 

Dynamics of structural systems, undergoing large angular rotations and operating at high 
speeds, are highly nonlinear. Examples of such systems include high performance aircraft, 
large space manipulators, mechanical linkages. Off-line modeling based on the principles 
of structural mechanics is very hard to keep-track, although symbolic processing 
computer tools can help reduce that complexity. Furthermore, the systems operate in 
large variety of conditions (i.e. a partially damaged combat aircraft), all of which can not 
be anticipated and modeled off-line. The distributed flexibility of inertia results in infinite 
dimensional dynamic model. The system state can be approximated by modal truncation 
which results in a finite dimensional dynamic model. The question of how many modes to 
include in the model remains an unresolved issue. The necessary number of modes 
depends on the operating conditions and required accuracy in the model. As for all 
control systems, the robustness is a fundamental requirement in control of systems 
involving distributed mechanical flexibility. Particularly in life critical applications 
(combat aircraft, space operations), the control system should be able to learn and adapt 
to the changing conditions. 

Why should we study artificial neural networks in control of mechanically flexible 
systems? Artificial neural networks have the following properties which make them very 
attractive for the above stated control problem: 

1. learning ability of ANNs by modifying the interconnection weights, 
2. the distributed storage of information and hence fault tolerant operation, 
3. parallel implementation and hence increase in real-time implementation speed by 

several orders of magnitude. 

The implication of the first property is that a proper ANN architecture can learn the 
nonlinear dynamics of a mechanical system which has distributed flexibility.      The 



traditional dynamic system identification methods are based on an assumed 
parameterization of the system dynamics. If the assumed parameterized model is not 
general enough, the recursive parameter estimation algorithms may never converge. 
Likewise, over-parametrization may result in long convergence time and non-uniqueness 
of solution.   In this regard, ANNs can be considered as generic powerful parameterizers. 

There is no need for a-priori information to parameterize the system. One only has to 
choose the proper ANN architecture and size. Once this is done, the only thing needed is 
the desired input, measurement signals, and the output be connected to the input-output 
(I/O) lines of the ANN. The artificial neural networks are called the neuro-controllers 
when they are used in control of dynamic systems. 

The artificial neural networks are engineering models which mimic the structure of the 
human brain . The basic building block is always a simple neuron. The neuron operates 
on its input and generates a function. The input to the neuron may be the weighted sum of 
many input signals (Fig.l). The output of the neuron is a single signal, but it may be 
connected to many other neurons with various weights. The function of the neuron 
(called the activation function) may be a static function (linear, saturation, or nonlinear) or 
a dynamic filter like function with local memory. Human brain neuron is believed to 
have local memory, where the current output is not only the function of the current input, 
but also the past input values. Feedforward type neural nets use neuron models with 
static activation functions, i.e. back propagation nets. Recurrent nets generally use 
neuron models with filter characteristics, i.e. Hopfield nets. 

The main classification of the ANNs are based on their architecture. Common properties 
among all architectures are that they all use simple neuron models as the main building 
block or processing element, and that they are highly interconnected. The 
interconnection type determines the architecture. If the neurons are organized in layers, 
and the output of one layer feeds into the input of the next layer, it is called the 
feedforward type ANN (Fig.2a). If the output of a neuron in a layer is connected to a 
neuron in the earlier layer or back to itself, this creates a feedback loop. Such ANNs are 
called the recurrent type ANNs (Fig.2b). Feedforward nets are essentially a general 
nonlinear function approximators. They can learn (approximate, interpolate, and 
extrapolate) any nonlinear static input-output function. In order to capture the memory 
behavior of dynamic system response, a window history of input-output samples must be 
provided to the feedforward ANN (FF-ANN). The window size should be long enough 
to cover the significant part of the impulse response of the dynamic system. Hence, the 
FF-ANNs can be used not only to learn nonlinear static functions, but also nonlinear 
dynamic functions by properly sizing its dimension and providing a window of time history 
of nonlinear dynamic system input-output. Cerebellar model articulation controller 
(CMAC) neural network also belongs to this class. 

Recurrent neural nets are dynamic systems. When formulated properly, the state of the 
neural net evolves in time and converges to some values. The converged values of states 
are such that they represent the local minimum of the energy function of the network. A 
recurrent network is uniquely defined by its architecture (i.e. Hopfield net), size, initial 



conditions, and the network connection weights and biases. The connection weights and 
biases determine the shape of energy function of a network. Therefore, the way the 
connection weights and biases defined determines the task it performs. The key idea is to 
formulate the recurrent ANN interconnection weights and biases such that they create an 
energy surface whose minimum is the solution of the physical optimal control or 
estimation problem we seek to solve. In fact, recurrent nets can be used to solve any 
optimization problem. 

II.      Summary of Results 

Here we will briefly summarize the main accomplishments of the work conducted for a 
period of one year between Sept. 15, 1992 - Sept. 14, 1993, and supported by Air Force 
Office of Scientific Research. The details of every item can be found in the papers 
published in refereed journals and conferences. The copies of these papers are also 
attached to this report. 

The primary objective of this project was to study the potential uses of artificial neural 
networks in motion control of mechanical systems which involve distributed mechanical 
flexibility. Three different classes of artificial neural networks were studied and applied as 
learning controllers in various case studies: 

1. Hopfield neural networks were formulated such that they could be used as modal 
parameter estimators for control of linear structural systems (AIAA paper'93). The 
same type of ANN was also used for the real-time solution of the discrete-time LQ- 
optimal control problem with applications to structural systems (WAM'93 paper, and 
Int. J. of Neural Networks'93). A Hopfield net (HN) is a fully connected recurrent 
ANN type. In order to uniquely define a HN, the net size (the number of states or 
neurons), the neuron activation function and its saturation values (i.e. C tanh(x) 
function), the neuron impedance (Ri, Ci), and the interconnection weights and biases 
must be specified. Changing the net interconnection values and biases changes the 
shape of the energy function. Therefore, the network states would converge to 
different values if the weights and biases are different. Any optimization problem can 
be addressed with HN by formulating the HN such that the energy wells created by the 
specific weight and biases are the solution of the optimization problem. We 
addressed two different problems in control of systems involving distributed 
mechanical flexibility: 1. modal parameter estimation, 2. real-time solution of discrete- 
time LQ optimal control problem. The approach in both cases is to relate the Hopfield 
net interconnection and biases to the measured states or given dynamic model 
parameters. Then, as the Hopfield net states evolve in time and converges, the 
converged values are the solution of the optimization problem. The values to which 
the Hopfield net states converge represent the states which result in minimum network 
energy wells (Fig.3). In the case of modal parameter identification the Hopfield net 
states converge to the true modal parameter values. In the case of real-time LQ 
optimal control problem solution, the Hopfield net states converge to the optimal 



trajectory and control solution. In the latter case, the order of the Hopfield net is 
proportional to the number of sampling time intervals taken in the LQ optimal control 
problem. As this number gets large, the real-time implementation of Hopfield net may 
not be practical. Therefore, a given computational hardware resource will dictate the 
time window of optimization can be performed for the optimal trajectory planning and 
control. This is particularly important in high performance flight control systems. A 
typical representative result of this approach is shown in Fig.4. Figure on the left 
shows the convergence of the HN approach in identifying the modal parameters of a 
flexible beam. Here we show only the input coupling modal gain. The other 
parameters of the modal dynamics (modal frequencies, damping ratios, other modal 
gains at the input and output locations) were also successfully estimated. The figure 
on the right shows the convergence of the HN solution for the LQ optimal control of 
flexible beam. These are the results of HN after 10,000 iterations. It clearly shows 
that the HN solution converged to those of Riccati solution. The two different 
utilization of the Hopfield net, one for the modal parameter identification and the 
other for the optimal control, are combined to form an adaptive learning controller 
(Fig.5). This is an ongoing work. The primary applications are large space 
structures, flexible wing aircraft flight control, missile trajectory guidance and 
control, and vibration control. 

2. Back propagation neural networks were used in a trainable controller architecture 
where the neural net learns the inverse dynamics of a mechanical system, including 
distributed flexibility, and uses it in real-time motion control of the system (IEEE 
paper). The neuro-controller runs in parallel with a teacher. The teacher may be 
another controller or even a human operator. The neuro-controller is trained to 
control the dynamic system just as the teacher does. A repetitive motion sequence is 
designed for the training cycle. The same architectural approach is also studied with a 
special class of feedforward neural nets. The goal was to improve the learning rate 
compared to the back propagation learning algorithm. The neuro-controller is FF- 
ANN type where the first layer has nonlinear sigmoidal neurons, where as the last layer 
has neurons with linear activation functions (Fig.6). Furthermore, the input 
distribution nodes are fully connected to both the hidden and the output layers. It is 
shown that the learning rate using an extended Kaiman filter type learning algorithm 
was two orders of magnitude faster than the back propagation learning rate. The 
details of this work is presented in the paper submitted to the AIAA J. of Guidance, 
Control, and Dynamics (AIAA'93-2). It is also shown that the error between the 
desired and actual output of the neuro-controllers converge to zero exponentially (Fig. 
7) 

3. Cerebellar Model Articulation Controller (CMAC) is a special simple class of artificial 
neural networks. A new mapping algorithm was developed which is the most 
significant component of a CMAC. We developed C-code that implements CMAC 
architecture in real-time on an IBM-PC. This work was also partially supported by 
National Institute of Standards and Technology for high precision machine tool 

c control applications, and is on-going. The theoretical development of the work is 



completed and mature enough that we are working on the real-time implementation of 
this approach (ACC'93 paper, ASME-JDSMC'93 paper). Unlike, the back 
propagation nets where for every error all of the connection weights are modified, the 
CMAC net modifies only a small portion of the interconnection weights for a specified 
error. In other words, CMAC learns a nonlinear function locally. For a given input 
state, the CMAC maps it to a finite number of memory locations (Fig.8). The 
important features of the mapping algorithm are that it must map similar states to 
similar over lapping memory locations, and it must map different states to different 
memory locations. This provides the generalization and interpolation ability to the 
CMAC net. Furthermore, it reduces the amount of memory required by the input 
space. Let us assume that we map each distinct sample of input space to one unique 
memory location. Assume that we have a input space of dimension 10, with each 
space range is discretized to 1 in 1000 part. The total number of distinct input space 
is 10A30. If we use one to one mapping, the required memory (10A30) is more than 
all the computer memory exists in the world. However, all of the input space 
locations are not encountered in a given operation. For instance, a robot arm passes 
through only a small percentage of all of points in its workspace during a trajectory, 
not all of the points in the workspace. Recognizing this fact one can develop mapping 
algorithms that require much less memory of practical size. One approach is to use 
hash-coding techniques. Furthermore, we developed new mapping algorithms that 
work reasonably well and does not need hash-coding. Hash-coding reduces the 
efficiency of the CMAC. Our approach for the application of CMAC in the context of 
the control of structural system is shown in Figure 9. The CMAC runs in parallel with 
a standard controller, i.e. PID type. Initially, the CMAC may have zero knowledge of 
the system. The control action is the sum of the CMAC and the PID controller 
outputs. The CMAC modifies its memory content based on the PID output. As long 
as there is output from the PID controller, it means that there is a tracking error and 
the learning continues. The learning stops when all of the control action comes from 
the CMAC, and none from the PID controller. Zero control command from PID 
means that there is no error. The CMAC alone is able to perfectly control the system. 
Figure 8 shows an example of CMAC learning of a nonlinear function. The results of 
a tracking motion control accuracy under the presence of large friction is shown in 
Fig. 10. The system model is a simple mass-force system. However, there is large 
friction in the system which is unknown to the controller. The velocity and position 
tracking accuracies are compared under PID control alone and the CMAC+PID 
control together in the table given on the right. In high precision machine tools, we 
need velocity control at the level of 10 micrometers per minute with tracking accuracy 
of 1 %, and position control accuracy less than 100 nanometers.. 



The following issues are found to be significant for practical   applications of neuro- 
controllers: 

• Learning convergence rate of back propagation networks is too slow, and needs to be 
improved for real-time control applications. In contrast, the CMAC neural network 
and extended Kaiman Filtering based algorithms learn orders of magnitude faster than 
back propagation nets and seems to be more practical for real world problems. 

• The back propagation through time and Hopfield network approach may have very 
similar properties that are yet to be understood. However, the back propagation thru 
time will require long periods of off-line training. Whereas, Hopfield nets can be 
implemented in real-time provided the analog VLSI or optical computing technologies 
become available. The difference is that the training set needs to be presented over and 
over to the back propagation network until the learning is sufficiently accurate. 
However, the complexity of the mathematical operations prohibits their analog VLSI 
or optical computing implementation. Hopfield nets, on the other hand, are nonlinear 
dynamic systems whose evolution in time must be calculated and the convergence rate 
is a function of the network time constant. Since the operations involved in 
implementing Hopfield nets are much more suitable for implementation on analog 
VLSI or optical computing, they hold a better promise for real-time, implementation 
than back propagation nets do. 

• CMAC learning algorithm is very practical, has a fast learning rate, and may be the 
first one that will show significant practical application success among other artificial 
neural network based controller architectures. Our study of this approach for ultra- 
precision motion control with applications in precision machine tools has been very 
encouraging. The potentials of this approach should be further explored for structural 
control. We have developed a real-time implementation of CMAC using ANSI-C and 
TMS 320 DSP chip based PC bus board. 

• Robustness of CMAC controller approach we proposed should be studied. It seems 
that the controller have very good robustness properties due to the fact that CMAC 
works in parallel with a PID type controller. 

• The CMAC controller may take the form of appropriate controller for different 
situation automatically through the learning process, i.e. it may converge to an optimal 
adaptive PID controller, or a sliding mode controller, or a robust H_inf controller. 
These characteristics, which the CMAC controller may have but unknown to its user, 
should be studied in fundamental level. 
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